Tytuł elementy analizy tensorowej. Wydanie 2 Autor Leszek M. Sokołowski Język polski Wydawnictwo Wydawnictwa Uniwersytetu Warszawskiego ISBN 978-83-235-3499-0 Rok wydania 2018 Wydanie 2 liczba stron 424 Format pdf Spis treści Przedmowa do drugiego wydania 9
Przedmowa do pierwszego wydania 10
1. Preliminaria 13
1.1. Przestrzeń i czasoprzestrzeń w matematyce 13
1.2. Wektory na różnorakości 15
1.3. Tensory 16
1.4. Przestrzenie Rn i En 17
1.4.1. Afiniczna przestrzeń euklidesowa En 21
1.5. Odwzorowania przestrzeni Rn 24
1.6. Transformacje współrzędnych 29
1.6.1. Współrzędne biegunowe na płaszczyźnie 33
1.7. Rozmiar przestrzeni 36
1.8. Notacja 37
2. Rozmaitości różniczkowe 40
2.1. Wprowadzenie 40
2.2. Definicja rozmaitości różniczkowej 42
2.2.1. Różnorodność 50
2.3. Przykłady różnorakości gładkich 53
2.4. Rozmaitości gładkie w Rn 61
2.5. Rozmaitości indukowane i iloczynowe 67
2.6. Powierzchnie jednostronne. Wstęga Möbiusa i butelka Kleina 69
2.7. Odwzorowania różnorakości 74
2.8. Krzywe gładkie 81
2.9. Klasyfikacja rozmaitości 85
3. Wektory i tensory 88
3.1. Geometryczny opis wektora 88
3.2. Przestrzeń styczna do En 91
3.3. Liniowa transformacja współrzędnych w En i zmiana bazy w TpEn 93
3.4. Wektor jako operator różniczkowy 95
3.5. Przestrzeń styczna do różnorakości 98
3.6. Gładkie pola wektorowe 102
3.7. Wektory kowariantne 105
3.8. Pola kowektorów i gradient funkcji 108
3.8.1. Graficzne przedstawienie kowektora 112
3.9. Tensory 115
3.10. Składowe i bazy tensorów 117
3.11.Pola tensorowe 119
3.12. Działania na tensorach 124
3.13.Komutator pól wektorowych 126
3.14.Tensor metryczny 130
3.15.Operacje na tensorach za pomocą metryki 140
3.16.Wyznaczniki i symbol Leviego–Civity 143
3.17. Uogólniony symbol Kroneckera 149
3.18.Tensory względne 152
3.19. Rozmaitości dwuwymiarowe 153
3.20. Metryka hiperpowierzchni 154
3.20.1. Sfera Sn 160
3.21. Przestrzenie hiperboliczne 161
3.21.1. Wstęp historyczny 161
3.21.2. Płaszczyzna hiperboliczna jako sfera w przestrzeni Minkowskiego 163
3.21.3.Model Kleina płaszczyzny Łobaczewskiego 164
3.21.4.Model Poincarégo płaszczyzny hiperbolicznej 166
3.21.5. Pseudosfera Beltramiego 167
3.21.6. Przekształcenia modeli 170
3.22. Orientowalność rozmaitości 171
4. Odwzorowania tensorów i pochodna Liego 175
4.1. Odwzorowania styczne funkcji i wektorów 175
4.2. Odwzorowania styczne dla kowektorów 179
4.3. Odwzorowania styczne dla dowolnych tensorów 180
4.4. Transformacje czynne i bierne 182
4.5. Symetrie i przeniesienie według Liego 184
4.6. Pochodna Liego 187
4.7. Ogólne własności pochodnej Liego 190
4.8. Pochodna Liego tensorów względnych 195
4.9. Symetrie 198
5. Pochodna absolutna i kowariantna 201
5.1. Pochodna absolutna wektora 202
5.2. Pochodna kowariantna wektora 204
5.3. Transformacje koneksji afinicznej 207
5.4. Pochodna kowariantna i absolutna tensora 209
5.5. Pochodne wyższych rzędów 214
5.6. Pochodne kowariantne tensorów względnych 215
5.7. Przestrzeń z koneksja afiniczna 217
5.7.1. Koneksja symetryczna i pochodna Liego 218
5.8. Przeniesienie równoległe 220
5.9. Linie geodezyjne 223
5.9.1. Przekształcenia geodezyjne koneksji afinicznej 228
5.9.2. Interpretacja geometryczna skręcenia koneksji 230
5.10. Odwzorowanie eksponencjalne i współrzędne riemannowskie 233
5.11. Krzywizna przestrzeni 236
5.12.Tensor krzywizny 238
5.13. Interpretacja geometryczna tensora krzywizny 245
5.14. Przestrzenie afinicznie płaskie 247
5.15.Pochodna Liego koneksji i krzywizny 253
6. Różniczkowanie w przestrzeni Riemanna 257
6.1. Koneksja metryczna i symetryczna 257
6.2. Kowariantne operatory różniczkowe 263
6.3. Tożsamości różniczkowe pierwszego rzędu dla metryki 267
6.4. Różniczkowanie tensorów względnych i pochodna Liego 270
6.5. Geodetyki jako linie najkrótsze 272
6.5.1. Form–inwariantność funkcjonału długości 278
6.5.2. Ekstremum warunkowe 281
6.6. Własności metryczne geodetyk 285
6.7. Przykłady linii geodezyjnych 290
6.8. Współrzędne normalne riemannowskie 300
6.9. Współrzędne normalne geodezyjne Gaussa 309
7. Krzywizna i izometrie przestrzeni Riemanna 314
7.1. Tensory Riemanna i Ricciego i skalar krzywizny 314
7.2. Przestrzenie metrycznie płaskie 317
7.3. Pola wektorowe kowariantnie stałe 319
7.4. Krzywizna przestrzeni w rozmiarach 1, 2 i 3 321
7.5. Krzywizna przestrzeni S2, H2, T2, S3 i H3 324
7.6. Krzywizna przestrzeni wielowymiarowych. Tensor Weyla 326
7.7. Czasoprzestrzenie czterowymiarowe 330
7.7.1. Przestrzeń de Sittera 330
7.7.2. Przestrzeń anty–de Sittera 335
7.7.3. Czasoprzestrzenie Robertsona–Walkera 337
7.7.4. Płaska fala grawitacyjna 340
7.8. Tensory krzywizny i tensory Weyla dla przeróżnych metryk 343
7.9. Niezmienniki tensora krzywizny 345
7.10. Tożsamości Bianchiego 348
7.10.1. Całkowe tożsamości Bianchiego 350
7.11. Dewiacja geodezyjna 354
7.11.1. Skalarne równania dewiacji geodezyjnej 361
7.12. Krzywizna sekcyjna 363
7.13. Krzywizna a metryka 367
7.14. Izometrie i przestrzenie z symetriami 367
7.14.1. Przestrzenie o stałej krzywiźnie 369
7.14.2. Jednorodność i izotropowość 372
7.14.3. Przestrzenie o stałej krzywiźnie i symetryczne 375
7.15.Wektory Killinga 376
7.15.1. Tradycyjna konstrukcja wektora Killinga 378
7.16.Wyznaczenie izometrii z wektorów Killinga 380
7.17. Własności wektorów Killinga 383
7.17.1.Pola Killinga i Jacobiego 390
7.18.Warunki całkowalności równań Killinga 392
7.19.Wektory Killinga a jednorodność i izotropowość 395
7.20. Przykłady wektorów Killinga 398
7.21.Wektory ortogonalne do hiperpowierzchni 406
7.22. Izometrie przestrzeni zamkniętych 409
Skorowidz 413
Skorowidz nazwisk 421
Opinie i recenzje użytkowników
Dodaj opinie lub recenzję dla Elementy analizy tensorowej. wydanie 2. Twój komentarz zostanie wyświetlony po moderacji.